Ecological Implications of Sponge Nutrient Cycling on the Florida Keys Reef Ecosystem

Patrick J. Gibson

Chris Martens, Niels Lindquist, Brian Popp, Nyssa Silbiger, Dan Hoer

Linking Science to Management on the Florida Keys Marine Ecosystem Duck Key, FL October 21, 2010

Collaborators

- Chris Martens, Niels Lindquist, Brian Popp
- Rich Camilli, Bob Byrne, Jim Hench, Johanna Rosman, Howard Mendlovitz, Dan Hoer, Meredith Kintzing, Nyssa Silbiger, Melissa Southwell, Jeremy Weisz, Sherwood Liu, Lori Adornato, Pam Hallock-Muller, Ute Hentschel, Bonnie Chang, Carol Arnosti, Joe Boyer, Brian White, many, many others.
- Funding Sources
 NSF, NOAA, NURC/ARB,
 PADI Foundation

Coral Reef Decline

Insert Your Favorite Coral Cover Plot Here

Why Sponges? (Sponge 101)

- Massive Pumping: over 50,000 times their volume/day.
- Host diverse microbial communities.
- Aerobic and anaerobic tissue environments.
- Dominant reef animal: >20 times live coral biomass.
- "Passive" alteration of water chemistry.
- "Active" alteration of reef structure through bioerosion.

Sponge Nutrient Cycling

Discoveries:

- 1. Sponges with large associated microbial communities use primarily DOM as a C source.
- 2. Sponge respiration drives localized acidification.
- 3. Sponges host coupled nitrification-denitrification.
- 4. Coral reef sponge and algae populations create a positive feedback loop that encourages their proliferation at the expense of hard corals.

In situ Instrumentation – A Cabled Observatory

- Aquarius Reef Base infrastructure facilitates a unique system for in situ real time reef observation and experimentation
- The underwater lab:
 - TETHYS Membrane Inlet Mass Spectrometer (O₂, N₂, Ar, CO₂)
 - SEAS Spectrophotometric Auto Analyzers (pH, NO_x)
 - AADI String Optode System (10 O₂, C, T, P, Turbidity, Current)
 - Nortek ACDPs and ADVs.

The Underwater Lab

Realtime Data Flow

Continuous, realtime data monitoring with instrument control from the ARB habitat or base.

Diver Collections, Field and Lab Experiments

Sponge Stoichiometry $C_{106}N_{21}P + \sim 1500_2 \rightarrow$ $106CO_2 + (21NH_4^+ \rightarrow \sim 20NO_3^- \rightarrow \sim 1N_2)$ +1P + water, etc...

DOC Uptake

Respiration and pH

Left Scale: • uM O2 Right Scale: • pH

Localized Acidification

Aragonite Saturation

•Comparison of pH 0.05 m above boring sponges vs. 5 m above in water column.

•High rates of sponge respiration diminish reef calcification.

•Carbonate accretion stops at Ω -arag <3.3.

(Kleypas et al. 1999, Kleypas & Langdon 2006, Hoegh-Goldberg et al. 2007)

Local vs. Global Change

Conch Reef BBL experiences localized minima in carbonate system parameters:

pH < 7.9 Ω-arag < 2.6

Equivalent to IPCC Global Ocean pH projections beyond 2060.

Is Conch Reef 50 years ahead of schedule?

Sponge Stoichiometry $C_{106}N_{21}P + \sim 1500_2 \rightarrow$ $106CO_2 + (21NH_4^+ \rightarrow \sim 20NO_3^- \rightarrow \sim 1N_2)$ +1P + water, etc...

Nitrification

Reef N Flux Budget-X. muta only

- Estimated 0.925 mmol NO_X L_{sponge}⁻¹ day⁻¹
- 2.6 L X.muta m⁻² of reef
- 2.4 mmol NO_x m⁻² day⁻¹
- Reef Sediment Flux = 0.41 (±0.22) mmol N m⁻² day⁻¹

Ecosystem Interactions

- Space (hard substrate) is a limiting resource of reef ecosystems.
- Degraded reef ecosystems feature reduced hard coral populations which create this resource.
- Positive and negative feedbacks exist which compound the effects of resource limitation.

Run controls for algal respiration, microbial respiration, treatment effects.

Sponge Respiration of Algal DOC

N. Silbiger unpublished

Reef Ecosystem Feedback

Take-Home Messages

- Sponges dominate much of the Keys reef ecosystem.
- Rapid metabolic processes can alter reef water quality.
- Feedbacks between reef ecosystem components may be accelerating system change.
- More attention should be paid to the functional role of sponge populations on the reef.

Thank You!

